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dimensions 
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Abstract. Field theory renormalisation group methods are used to describe the crossover 
behaviour of the second virial coefficient A2 of the osmotic pressure for a monodisperse 
polymer solution as a function of temperature and molecular weight to second order in 
c = 4 - d. The results are in significantly better agreement with experiment than previous 
renormalisation group calculations. 

1. Introduction 

Following the pioneering work of de Gennes (1972), Burch and Moore (1976) have 
shown how multipolymer properties may be calculated using a particular O ( n )  sym- 
metric field theory in the limit n +CO.  Close links exist between the Green functions of 
the following O ( n )  symmetric theory, in the limit n = 0 and various correlation 
functions of the polymer problem: 

Here him is an ( n  x m)-component field and the bare mass has been split into M &  + t,, 
a = 1,2 ,  . . . , m, where MLc is the bare mass of the critical theory. The cut-off A which 
reflects the finite size of the monomers is implemented by the fourth-order derivatives 
in (1.1); henceforth we choose units in which A = 1. The higher symmetry, O(nm), of 
the interaction term reflects the inability of the monomers to distinguish between inter- 
and intra-polymer contacts, whilst phenomenologically the coupling U takes the form 
U - (1 - 0 / T )  where 0 is the Flory temperature. We do not consider the collapsed 
phase U < 0. 

In this paper we consider only monodisperse solutions, i.e. each polymer has the 
same molecular weight M, corresponding to N flexible units and investigate the 
crossover from the Wilson-Fisher to Gaussian fixed point exhibited by the second virial 
coefficient A2 as the temperature T approaches the Flory temperature 0. Burch and 
Moore (1975, to be referred to as BM) have performed a similar calculation using a 
phenomenological approach due to Wegner and Reidel (1973); their renormalisation 
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group equations have the same form as an order E calculation but additional terms are 
present at order E ~ .  

The virial coefficients of the osmotic pressure (Yamakawa 1971) are described 
within the polymer model due to Edwards (1966) by the multi-dimensional inverse 
Laplace transform of connected Green functions computed from the above field theory 
in the limit n = 0. In particular the second virial coefficient A2 is of the form 

A 2 = PN,v/ (PN Y (1.2) 

where PN and PNN are given in terms of Green functions by: 

Here Z is the partition function and V the volume of space. In the n = 0 limit it is 
straightforward to show that Green functions will depend only on the fields which 
appear in external legs. (Fields with other values of CY appear only in closed loops, 
giving a factor of n.) Thus, for convenience, one chooses a 'minimal' theory when 
calculating any particular correlation function; for example whilst G4(232) may be 
calculated for any theory for which m Z- 2 ,  the minimal theory has m = 2. 

The Green functions GN are of the general scaling form: 

Here x - and f(x) is regular except at 00 (x 2 0). One observes a crossover from 
Gaussian behaviour (x << 1) to the full critical behaviour described by the  Wilson-Fisher 
fixed point of the renormalisation group (x >> 1) as the temperature is raised. Explicitly 

x<< 1 

x >> 1 f ( x ) =  i Xa, + o(x) [ I  + O ( X - 2 w / r ) ]  

i: 
Now the Laplace transform of N8 is simply 

No e-'wr d N  = r(@ + 

so that the associated functions P N  passes the same qualitative structure in terms of the 
polymer scaling variable t - u N " ~ .  The polymer situation (N  >> 1) thus corresponds 
exactly to the approach of the critical temperature ( t  << A2) in the magnetic analogue. In 
this sense the problem is critical so the properties of scaling and universality charac- 
teristics of the latter system appear naturally in the polymer problem. For example the 
second virial coefficient A2 - ulVz f (z ) ,  where the crossover scaling function f(r) 
describes the crossover from a system characterised by swelled chains ( z  >> 1) to random 
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walk behaviour ( z  << 1) as the 8 temperature is approached: 

f U N ' [  1 + O(Z)]  

1 UN22 [ 1 + O(z  -y] 
z << 1 

2 >>1. 
A2- 

Since the mean square size of a single polymer ( R 2 )  - N" ( z  >> 1)  then A2 is propor- 
tional to the excluded volume as expected. 

To calculate correlation functions for the polymer system we shall clearly need to 
evaluate Green functions deep in the critical regime t << 12. We are therefore led to use 
the renormalisation group in d = 4 - E  dimensions in order to control the corrections to 
mean-field theory. Using the renormalisation group one may relate the singular part of 
a Green function (t<< .I2) to its value outside the critical regime ( t  = .I2), where 
straightforward perturbation theory may be trusted. We follow the approach of Bruce 
and Wallace (1976, to be referred to as RW) who worked within the formalism 
developed by Zinn-Justin (1 973). 

The broad outline of the paper i s  as follows: 5 2 introduces and solves the 
renormalisation group equation, then 5 3 describes the calculation of Phi and PhiN. 
Finally the second virial coefficient is constructed and compared with experimental 
data. 

2. The renormalisation group 

Using the renormalised perturbation theory developed by BrCzin er a1 (1973) it is 
straightforward to show that the N-point connected Green functions 
G"(r,, . . . , t,,,; U. A)  satisfy the following simple renormalised group equation in the 
limit n + 0: 

A a 1 d L  
{ A - +  a .I W ( U ) - - - ( - - - - ~ )  au .(U) 1 , t , - + y q ( u ) )  at, GL(t , ,  . . . , t m ;  U ,  A)=hG (2.1) 

where hGY is smaller than G'V by terms of order f / A 2  up to powers of ln(t/A'), in an E 

expansion. The functions W(u) ,  [ ( l / v ( u ) ) - 2 ] ,  q ( u )  are determined solely by the 
massless theory, i.e. f, = 0 for all (Y = 1 ,2 ,  . . . , m, so that they coincide with those of BW 

since the same ultraviolet regularisation is used. Introducing new variables, T, T,, 
8 = 1.2 .  . . . , m - 1, defined by 

T = ( fI ( t u ) )  l" 
U - 1  

' 0  

we obtain finally a renormalisation group equation similar in form to that of BW: 

( A - +  a W(u)--(--2 a 1 T-+--q(u))  a L  G2(T,  T,, U ,  A ) = A G L  
a A dl.4 .(U) i dT 2 

where to second order in a simultaneous power series expansion in (U, E )  for O <  U < 
U* = O ( E )  one has: 

w ( ~ ) =  + g U 2 ( 1  + t + ~ ~ ~ + o ( ~ ,  (2.4) 
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(2.5) 
1 

(--2) = -$4(1+;e)+$U2+O((U, 
"(U) 

?- / (u )=$u2+0( (u ,  (2.6) 

As usual a factor K d = ~ d ' 2 r ( d / 2 ) - 1 ( 2 ~ ) - d  has been absorbed in U. It should be 
remarked that except for the O ( n m )  symmetric case (fa = t for all a), the n = 0 limit is 
essential to the existence of such a simple renormalisation group equation; for non-zero 
n the scalar group equation; for non-zero n the scalar equation (2.1) is replaced by a 
matrix equation in the spin indices, Only in the limit n = O  are these matrices 
proportional to the identity so that (2.1) is resurrected. 

In the critical regime t << A* by ignoring AGL we obtain a homogeneous equation for 
the leading terms of G L  in the critical regime. Although the solution for G L  which 
follows involves the perturbative regime t = h2, for which AG' may certainly not be 
neglected, the homogeneous form may be retained with the understanding that i t  
applies only to the 'leading terms' in the above sense. The final form of the renor- 
malisation group equation is therefore: 

[ A - +  a W ( U ) - - (  a 1 2 T-+-?-/(u)] a L  GL(T, TP ,u ,A)=O.  
a l l  au --I .(U) aT 2 

This homogeneous equation is solved using the method of characteristics, one 
simply writes r =In A and introduces functions u(T), T ( r )  such that: 

d 
d r  - u ( r ) =  W(U(7)) (2.8) 

d 1 
-1n T( r )=2--  (2.9) 
d r  "(U) 

y = l , 2  , . . . ,  M-1. (2.10) 
d 

d r  
- Ty(7) = 0 

With the initial conditions ~ ( 0 )  = U,  T(0)  = T, (A = 1) then (2.7) has the formal solution 

GL(T, U, 1)= (eL'2 5' A(u(r'))dr') GL(T(r) ,  u ( r ) ,  er). (2.11) 
0 

Solving (2.8), (2.9) for u(T), T ( r )  one finds that: 

(2.12) 

(2.13) 

such that differentiation resurrects (2.8), (2.9) up to terms of O((U, 
Wilson-Fisher fixed point coupling: 

Here U* is the 

U* = &(1 + & ) + o ( ~ ~ ) .  (2.14) 

Further v = .(U*) and w = -vW'(u*)  are respectively the usual correlation length and 
crossover exponents, whilst p satisfies the relation: 

pW = 2 . - 1 + o(€~). (2.14) 
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In the next section the equations (2.10) to (2.14) are exploited in order to determine 
the two- and four-point connected Green functions required to evaluate the second 
virial coefficient A2. By a suitable choice of T ,  T ( T )  = e2r, one puts the Green function 
GL(7) into the perturbative regime, where the standard graphical expansion may be 
used. Equations (2.10)-(2.14) then yield the full critical Green functions GL(0) to 
within terms of O((U,  E ) ' ) .  This matching procedure produces systematic corrections to 
the results of BM who assume that one may choose a 7 such that GL(7) is proportional to 
the zeroth-order term of its perturbation expansion in U(') for all N.  

3. The calculation of Green functions 

3.1. The two -point function 

It is convenient to use the minimal Hamiltonian m = 1 ( n  = 0) and instead of calculating 
perturbatively G2(7) with a propagator /4'+ A-'q4+ t (~) I - l ,  vertices mic and U ( T )  e", 
to use a propagator 1q2 + A-2q4+ r(7)I-l where r-l is the exact susceptibility. One then 
obtains r as a function of r by using the following self-consistency equation for the 
self-energy : 

r = t + C(0, r)- C(0,O). (3.1) 

Following BW one obtains, 

r(T)= t ( T X 1  ++u(.r)[ln(t(.r) e-")+ I ]}+o((u ,  E ) ' )  (3.2) 

Despite the fact that we require the two-point function correct to O(E') the 
O((u,  E ) ' )  corrections to (3.2) may be neglected, for at this order they only contribute to 
a non-universal prefactor Z 2 ( u )  which is a harmless scale factor. Using the matching 
condition T(T)=  t ( 7 )  = eZr, equations (2.10)-(2.14) and the following additional 
information, the result of GZ may then be calculated: 

where q is the usual Wilson-Fisher exponent. 
The two-point function has the following simple form: 

p 2  

G'(t, U, 1 ) z r - l  =Z2(u)t-l  ( l -Zu(7))  (3.5) 

where 

pzu = 1 - + o(2); 
y is the usual susceptibility exponent. 

The non-universal prefactor &(U) having absorbed the non-universal factors to 
O(E'), then (3.5) constitutes a representation of the two-point function in terms of U ( T ) .  

Using the matching conditions and equations (2.11), (2.12) one may obtain the 
following compact parametric description for U ( T )  = pu*:  

(3.6) (1 - p)-"2"p = x 
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where 

Unfortunately one cannot carry this description through the process of Laplace 
inversion. Instead (3.6) must be solved separately in the perturbative (x<< 1) and 
asymptotic (x >> 1) regimes or the crossover variable, x. 

For x << 1, equations (3.5) and (3.6) yield: 

G2(t, U, 1) = Z 2 ( u ) t - ' [  1 +$(1 - $ 6 ) ~  + O(x')] (3.7) 

where Z 2 ( u )  has absorbed additional non-universal factors. 
For x >> 1, first eliminating U ( T )  in terms of (p, t ) ,  (3.5) and (3.6) give: 

~ ~ ( t ,  U, I ) =  z 2 ( U ) t - 1 X 7 P Z D i r F ( 1  -")[I 128  +$(I  - $ = ) X - 2 w ! c  (3.8) 

Finally PN is generated by Laplace inversion; the results are: 

z<< 1 (3.9) 

where 
z >>1 (3.10) 

(3.11) 

3.2. The four-point Green function 

For the four-point function, the minimal Hamiltonian has m = 2 (n  = 0) so that there 
are now two propagators in the problem (q2  + i1-2q4 + ra (T) ) - '  and ( q 2  + ,1-2q4 + 
r P ( 7 ) ) - l  where ru{rp}  is given in terms of t L Y { t p }  by (3.2) as before. Unfortunately the 
procedure is not as straightforward as before. for even at the one-loop level in the  
perturbation expankion of G4'2,2'(~)  we have 'mixed diagrams'. With the obvious 
notation, examples are given in figure 1. Again up to the non-universal prefactor Z4(u) 
which will now be a function of M / N  at O(E' )  if PNM is calculated, attention may be 
restricted to the O(U, E )  corrections. The only mixed diagram of first order (see figure 
l(a)) has the following form: 

(3.12) 

where h = t u / t p  and the matching condition T ( T )  = ezT has been employed. However, 
Laplace inverting quantities of the general form t;'tp'X(t,, t o )  will clearly be difficult. 
This problem may however be sidestepped for the important case M = N by effectively 
commuting the operation of Laplace inversion (K ' )  with the momentum integrations 
as follows. 

la1 ibl ' i c )  
Figure 1. A selection of mixed diagrams; only ( a )  need be evaluated. 
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The first step is to replace the smoothly cut off integral of our theory by a 
dimensionally regularised equivalent. To do this one notes that (appendix l), 

where the left-hand side is smoothly cut off and the right hand side is to be dimension- 
ally regularised. The problem is thus reduced to the Laplace inversion of the simpler, 
dimensionally regularised form. One may of course replace r,(T) and t , ( T )  by tu at this 
order. Writing 

(3.14) 

and re-arranging using the identity 

1 "  ;=lo dy e-Ay 

gives 

y =  J dxX1-f/2 J, dAl J dA2 e-(A~+A2)x(li4 e-A'a)(rib e-hr,). 
0 0 

One now recalls that r C b  e-" is the Laplace transform of a function f ( N )  defined as 
follows: 

(0  

I U41 
where 4 - 1 > 0. Laplace inverting 

O<N<A 

N > h  
(3.15) 

Y under the integral sign, we therefore obtain: 

(3.16) 

In particular for 4 = 2 + O(e)  evaluating the integrals on A and A 2  to order e, we have 
the result 

E'( Y )  = [ ( 2 / e )  + (t - 2 In 2 )  + O ( E ) I L - ~ ( ( ~ , ~ ~  )-"). (3.17) 

Finally, then for M = N, 4 = 2 + O ( E )  one may effectively pre-invert the contribution 
from the mixed diagram by using: 

L-l((tuto)-bX(tu, t s ) )=  -(2 In ~+S)L- ' ( (~ ,~ , ) -~ )+O(E) .  (3.18) 

Up to this pre-inversion, the calculation now follows the previous path, yielding the 
following results: 

z<< 1 (3.19) 

z >>1 (3.20) 
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where 
pow = 2(2 - y )  - d v  + O(e3)  A = -0,424. 

4. The construction of A2 

A2 is calculated in the poor-solvent region ( z  << 1) by inserting (3.9) and (3.19) into 
(1.2). Thus near the 0 point: 

A2 = UN*[ 1 - B z  + 0 ( z 2 ) ]  2 << 1 (4.1) 
where 

5 ( 1 - g A ) ~  -- 1 (1-$E) B..- 
16 r 2 ( 2 + i E )  2 r(i + + E ) ’  

In the good-solvent region (3.10), (3.20) and (1.2) yield 

(4.2) 
- 2 w / e  A2= CuN2z2e~f[1+Dz-”’‘+O(z-4w’‘)] z << 1 

where 

e = d v  - 2 + 0 ( ~ ~ )  

(the interesting non-universal prefactor Z 4 Z i 2  having been scaled out). 
The equations (4.1), (4.2) constitute a representation of the crossover from the 

Gaussian to Wilson-Fisher fixed points in d = 4 - E  dimensions, correct to 0 ( e 2 ) .  It 
should be remarked that A z  - N U d ( z  >> l), i.e. is proportional to the excluded volume as 
expected. 

In order to predict physics one must work in d = 3 dimensions ( E  = 1) so that one 
must decide at which point to introduce E = 1 into our expressions. Solving for U (7) as a 
function of the crossover scaling parameter ,y we used the exponential form of the 
parametric equation, thus the only consistent point of view, if we wish to retain the 
exponential forms (4.1) and (4.2) is to take E = 1 before expanding in x (or x - ’ ~ ) .  One 
therefore simply introduces E = 1 into (4.1) and (4.2); giving for the poor-solvent 
region: 

A2=~N’[ l -0 .0752  + 0 ( z 2 ) ]  z << 0.1 (4.3) 

A2 = 1 ~ 4 3 2 ~ N ~ ~ - ~ ’ ~ ~ ~ [ 1 + 0 * 2 4 1 ~ - ’  + O ( Z - ~ ’ ) ]  z-’<< 1.2 (4.4) 

and for the good-solvent region 

where y is determined by w ,  which has a particularly badly behaved E expansion: 

3 2  zeroth order 
w =+E(l-gE)+O(E 1-{ 

0,234 first order, 

whilst the recent work of Le Guillou and Zinn-Justin (1977) suggests that w = 
0.465 * 0.010 in three dimensions. Fortunately the results are insensitive to this 
difference; in figure 2 A Z  is plotted for o = 0.234 and w = 0.465 to illustrate this. 
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Figure 2. Plots of A ~ / u N ’  against z ,  for w = 0,234 (broken curve)  and w = 0,465 (full 
curve).  

Berry (1966) who measured the second virial coefficient A2 for a solution of 
polystyrene in decalin presents his results in terms of the Yamakawa (1971) pertur- 
bation expansion: 

A2 = u N 2 [  1 - 2,8652, + O((Z, )~) ] .  (4.5) 

Scaling 2 to reproduce (4.5) from (4.3) one may obtain a convenient comparison with 
this experimental data. In the good-solvent region one has the final result ( z  = 
38.202,): 

A2 = 0 ~ 3 4 4 ~ N ~ ~ ~ ~ ’ ~ ~ ~ [ 1 + 0 ~ 0 0 8 2 ~ - ~ ’ ~ ~ ~ ’  + O ( Z - ~ ’ ~ ) ~ ) ]  (4.6) 

with z ,  >> 0.03. This region of validity of the expansion was determined by computing 
the first correction to (4.5). Figure 3 is plot of A 2 / u N 2  against z predicted by (4.5), 
compared with the experimental data of Berry and the phenomenological result of 
Burch and Moore. The most probable source of the small discrepancy at large z is the 
failure of the relation U = 1 - O / T  when T is not close to 0 (Yamakawa 1971, p 375). 
In addition marginal operators, like d6 in d = 3 which produces logarithmic corrections, 
should strictly be included, particularly in the region of the Flory temperature. 
However, the present experimental data do not warrant the introduction of these extra 
degrees of freedom. 

5. Conclusions 

The calculation of the second virial coefficient of the osmotic pressure appears to 
reproduce the experimental data of Berry extremely well, making a significant 
improvement to the result of Burch and Moore. After tying down the functional form 
for z << 1 no further free parameters exist, whilst the exponents, given to O(e2) compare 
well with experiment ( E  = 1). 
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Figure 3. Plot of Az/uN’  against z ,  the data points are for polystyrene in decalin (Berry 
1966). The broken curve is an interpolation of (4.5) and (4.6). Also shown for comparison 
is the result of Burch and Moore (1976). 

The method generates the leading terms of polymer correlation functions within the 
homogeniety assumption; (2.7) and preceeding paragraph, to O(e2) .  For the sceptical it 
should be remarked that one may obtain an identical homogeneous equation in terms of 
renormalised parameters without this assumption (Bruce and Wallace 1976). A 
distinct advantage over the method of Burch and Moore is that corrections to their 
simple boundary conditions may be systematically included, their choice corresponding 
exactly to retaining only the lowest-order term of a perturbation expansion in U ( T )  for 
each GL(7).  Whilst the 0 temperature has been taken to be analogous to a Gaussian 
fixed point, one should strictly use a tricritical description by including the q56 coupling. 
In d = 3 dimensions, q56 operators are marginal at the 0 temperature so one would 
therefore expect logarithmic corrections to our results for z << 1. However, the present 
experimental data do not warrant the introduction of this extra degree of freedom. 

To solve the problems presented by the mixed diagrams we have had to use an 
alternative inversion technique to Burch and Moore; however, the diagrarms still 
constitute a considerable nuisance. Work is currently in progress to formulate the 
renormalisation group equations directly for polymer properties in order to further 
simplify this problem. It is hoped that we may then tackle the polydispersive problem; 
for example one could calculate the generalised second virial coefficient A2(M, N )  to 

Further a parametric description would then be obtained directly in terms of the 
polymer variables allowing a discussion of the convergence of the E expansion within 
this exact representation (to 0(c2)).  One would also be in an ideal position to determine 
the convergence of the power series representation. 

O(E2). 
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Equation (3.13) may be simply derived as follows: 

dx 1-</2 Lm [x ( l+x)+t , ] [x ( l+x)+tp]  

1 1 
-A)-( ---)I - 1 "  1 

-- J dxx'-''2[( 
t, - t p  0 x ( x + l ) + t p  x ( x + l )  X(X+l)+t,  x ( x + 1 )  

)I 2 
1)- ( E 

- 2- [ tB( 1 + ; ( 1 - t y  

dxX'-"2(---)] x +to x +to +O(t,, to, E )  

2 - t, 1 + - ( 1 - t ) + O(t,, rp  ) 
t, - t p  

1 1 

(3.13) 

Appendix 2 

For easy reference we list the E expansions of various quantities defined in the text: 

v=; (1+QE+&E2)+~(E3)  
= 1 1 + & 2 + ~ ( E 3 )  

77 = he2 + o ( ~ ~ )  
w = & ( I  -gE)+O(E 3 ) 

p =a( l+E)+O(E2)  

p2= -i(l +EE)+O(E2) 

p4 = -E€ + O ( 2 )  
e = -&(I - & E ) + o ( E  3 ). 

Of course only w and any other two quantities are independent, the relations are: 

Y = 42-77)  p w = 2 v - l  p2w = 1 - y 

p4w = 2 ( 2 - ~ ) - d ~  O = d v - 2 .  

Appendix 3 

Burch and Moore write phenomenological renormalisation group equations for their 
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P;, i = 1 , 2 , .  . . , M and F~ 

which correspond exactly to our equations (2 .8 ) ,  ( 2 . 9 )  if the O(e2)  corrections are 
ignored and one takes: 

2 3 
A =1 4 I = -  7 p , = f i f A  ( i = 1 , 2 ,  . . . , M )  P2 = BU 

for E = 1 .  Whilst Burch and Moore choose A = 5 rather than the latter value in order to 
obtain the experimental value v =?  for the correlation length exponent we have 
(2 -A)-' = $, a small difference. 

Now the Green functions G 2 M  have the general form 
d - M ( 2 + d )  G Z M  (ti, U, A) = A f (XL? U 1 

where the function f ( x i ,  U )  ( x i  = ti /A2) satisfies the following renormalisation group 
equation : 

( W(u)--- a l M  1 x , - + d - M ( d + 2 ) + M q ( u ) ) f ( x i ,  a u)=O.  
au V(U)i=l ax, 

Solving this renormalisation group equation as usual (A = l), with initial condition 
x i (0 )  = ti, u(0) = U one has 

G Z M ( t ,  U, l )=exp(  [ d - M ( d + 2 ) ] ~ +  j T q ( u ( ~ 1 ) ) d . r ' ) G 2 M ( x i ( T ) ,  U(')). 

Since A ( u )  = O(E') we see that at first order in E we reproduce the homogeneous form 
quoted by Burch and Moore for the Green functions GZM. Thus it is clear that the 
phenomenological calculation of Burch and Moore closely resembles an O ( E )  cal- 
culation, extra terms being present at O(E'). Of course it could be argued that instead of 
our simple correspondence one should allow F ~ )  to be non-linear functions of 
(ti, U), however it is then difficult to set up a consistent approximation system in order to 
obtain systematic corrections to the Burch and Moore calculation. 
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